Fast calculate ceil(log10(x)) of some unsigned number is described on
Bit Twiddling Hacks, this text show the SIMD solution for 32-bit numbers.
Algorithm:
1. populate value in XMM registers. Since maximum value of this function is 10 we need three registers.
movd %eax, %xmm0 // xmm0 = packed_dword(0, 0, 0, x)
pshufd $0, %xmm0, %xmm0 \n" // xmm0 = packed_dword(x, x, x, x)
movapd %xmm0, %xmm1
movapd %xmm0, %xmm2
2. compare these numbers with sequence of powers of 10.
// powers_a = packed_dword(10^1 - 1, 10^2 - 1, 10^3 - 1, 10^4 - 1)
// powers_c = packed_dword(10^5 - 1, 10^6 - 1, 10^7 - 1, 10^8 - 1)
// powers_c = packed_dword(10^9 - 1, 0, 0, 0)
pcmpgtd powers_a, %xmm0
pcmpgtd powers_b, %xmm1
pcmpgtd powers_c, %xmm2
result of comparisons are: 0 (false) or -1 (true), for example:
xmm0 = packed_dword(-1, -1, -1, -1)
xmm1 = packed_dword( 0, 0, -1, -1)
xmm2 = packed_dword( 0, 0, 0, 0)
3. calculate sum of all dwords
psrld $31, %xmm0 // xmm0 = packed_dword( 1, 1, 1, 1) - convert -1 to 1
psubd %xmm1, %xmm0 // xmm0 = packed_dword( 1, 1, 2, 2)
psubd %xmm2, %xmm0 // xmm0 = packed_dword( 1, 1, 2, 2)
// convert packed_dword to packed_word
pxor %xmm1, %xmm1
packssdw %xmm1, %xmm0 // xmm0 = packed_word(0, 0, 0, 0, 1, 1, 2, 2)
// max value of word in xmm0 is 3, so higher
// bytes are always zero
psadbw %xmm1, %xmm0 // xmm0 = packded_qword(0, 6)
4. save result, i.e. the lowest dword
movd %xmm0, %eax // eax = 6
Sample program
is available.